
32 The Delphi Magazine Issue 30

Delphi Meets COM: Part 3
by Dave Jewell

We’ve spent the last couple of
months looking at COM fun-

damentals in some detail. As prom-
ised, this month we’ll set the
theory aside for a while, roll up our
sleeves and look at a couple of
practical examples of COM pro-
gramming. This time round, we’ll
be majoring on how to develop
context menu handlers using
Delphi.

An OLE Automation Taster...
But wait! Before you fire up your
Delphi development system,
there’s just one last teensy weensy
bit of theory which we need to
cover (trust me, I’m a doctor!). Up
until now, I’ve talked about COM in
general terms without mentioning
how the Windows registry fits into
the picture. As you’ll undoubtedly
know, the registry stores all sorts
of important information about
your Windows setup, the
configuration settings for all your
favourite programs and much
more.

The registry is also absolutely
vital to the operation of COM. With-
out the registry, the COM system
wouldn’t work. In fact, it was prin-
cipally the development of COM
(see the first article in this series)
which was responsible for the
forsaking of text-based .INI files,
and the move towards the more
efficient, hierarchical, one-stop
registry system.

To see how vital the registry is,
let’s take a brief, appetite-whetting,
look at OLE Automation. Later in
this COM series, we’ll be covering
Automation in detail. If you’ve not
heard the term before, suffice to
say that it’s a powerful technique
which (put very simply!) allows an
application to be operated ‘by
remote control’ from another
program.

Probably the simplest way of
retrieving an OLE automation
object is to make a call to the easy-
peasy CreateOLEObject function.
This routine is provided by Delphi

in the COMOBJ unit, and the declara-
tion for it is:

function CreateOleObject(
const ClassName: string):
IDispatch;

You’ll remember that GUIDs which
are used to identify classes are
called CLSIDs? OLE Automation
simplifies things even further by
introducing the concept of the
PROGID which is simply a human-
readable class identifier. With OLE
Automation, we can do something
like that shown in Listing 1.

This example, (condensed from
one of Borland’s sample programs)
shows how easy it is to interact
with Microsoft Word using OLE
Automation. Firstly, the Create-
OLEObject routine is called with the
PROGID Word.Basic, thus retrieving
an automation object which can be
used to interact with WordBasic.
Next, the code queries Word to
determine the current language
version, and finally three WordBa-
sic methods are called to make
Word visible, create a new file and
write the current language version
string into the file.

Simple as this little demo is, it
should raise a number of impor-
tant questions in your mind. How,
for example, does the underlying
COM/OLE code know that the
PROGID Word.Basic is associated
with Microsoft Word? How does

procedure TForm1.FormCreate(Sender: TObject);
var
Lang: string;
MSWord: Variant;

begin
try
MsWord := CreateOleObject('Word.Basic');

except
ShowMessage('Could not start Microsoft Word.');
Exit;

end;
try
Lang := MsWord.AppInfo(Integer(16));

except
ShowMessage('Couldn''t get Word language version');

end;
MsWord.AppShow;
MSWord.FileNew;
MSWord.Insert(Lang);

end;

➤ Listing 1

the OLE manager convert the
PROGID string into the all-
important GUID needed to refer-
ence the target class? How does
the operating system know where
Microsoft Word is located, and
how does it know how to invoke
Word in response to an OLE Auto-
mation request? The answer to all
these questions can be summed
up in just two words: the registry.

Enter The Registry
Let’s try and answer those various
questions in more detail. If you run
the RegEdit utility and then open
up the HKEY_CLASSES_ROOT tree,
you’ll find that, sure enough,
there’s a registry key named
Word.Basic in this tree. If you open
up this registry entry, you will then
see the corresponding GUID (see
Figure 1).

Likewise, if you examine the
source code for the CreateOLEOb-
ject routine (inside the COMOBJ
unit), you’ll find that it calls Prog-
IDToClassID.

As the name suggests, this new
routine (which is also a part of the
COMOBJ unit) has the job of convert-
ing a human-readable PROGID into
the equivalent CLSID. The ProgID-
toClassID routine, in turn, is just a
wrapper around a lower level rou-
tine, CLSIDFromProgID which is part
of Microsoft’s internal COM code.
We haven’t got access to the
source code for this routine but,



February 1998 The Delphi Magazine 33

➤ Figure 1: The HKEY_CLASSES_ROOT part of the system registry
allows Windows to map PROGID's onto GUID's and also map GUIDs
onto PROGIDs. Here we can see the entry for Word.Basic.

clearly, CLSIDFromProgID is simply
examining the HKEY_CLASSES_ROOT
tree for the required PROGID entry
and returning the associated GUID.

Incidentally, if you want to go the
other way (ie convert a GUID into
the corresponding PROGID), you
can call the ClassIDToProgID func-
tion which wends its way down
onto another Microsoft routine,
ProgIDFromCLSID. This reverse
mapping is equally straightfor-
ward because a few more moments
with RegEdit will show you that
every registered CLSID can be
found as a distinct key in the
sub-tree, and Automation entries
within that tree contain a sub-key,
ProgID, which contains the human-
readable class identifier.

So far so good: we can see how to
map both ways between a PROGID
and a GUID, so we’ve answered at
least the second of our three ques-
tions. To answer the other two
questions, just look more carefully
at the entries in the aforemen-
tioned HKEY_CLASSES_ROOT\CLSID
sub-tree. You’ll see that, in the case
of in-process COM servers (such as
ActiveX controls and shell context
menu extensions) there’s a sub-
key called InProcServer32. This
sub-key contains the full pathname
of the server which implements the
designated COM object. Simple!

Context Menus:
As Viewed From The Shell
We could continue to talk in
abstract terms about how the reg-
istry stores information on avail-
able COM objects, but instead let’s
take a real-world example of how
the Windows 95 Explorer shell
integrates with context menu

handlers. In Figure 2, you can see a
dropped-down Explorer context
menu. As you know, the Explorer
program drops down a context
menu whenever one or more items
are selected and you right-click on
them using the mouse. The context
menu is so called because its con-
tents are determined by the con-
text, ie by the specific type of file
that’s been selected.

In Figure 2, you can see a number
of context menu entries that you
might not normally be familiar
with. The topmost menu item, Open,
is displayed whenever Explorer
has a file association for the
selected item(s). Because a ZIP file
is selected, and because WinZip
(Nico Mak Computing Inc.) is
installed on my system, a file asso-
ciation exists and therefore an Open
item is shown. The Extract to...,
Extract to folder and Create
Self-Extractor menu items are all

➤ Figure 2: On my system, a context menu has no less than six extra
custom entries when a ZIP file is selected. Explorer builds the
context menu 'on the fly' by calling all context menu handlers that
are registered for the selected file type.

provided courtesy of WinZip and
its sidekick, the WinZip self-
extractor program, which is capa-
ble of converting ZIP files into self-
extracting EXE files. In addition to
these items, the Hex Edit entry is
provided by a shareware hex
editor program called Hex Work-
shop and File Viewer is part of the
shell enhancements provided by
the Delphi add-in Merlin [which is
reviewed in the February issue of
Developers Review, plug, plug. Ed].

All these different programs
implement a context-menu han-
dler as an in-process server (that
is, as a DLL) which can be invoked
from the Explorer. How do these
different add-ons integrate into the
Explorer without treading on each
other’s toes, and how does
Explorer know how to activate
them at the appropriate time? For
a blow-by-blow explanation of how
this works, read on.

As mentioned above, Explorer
fills in the various context menu
entries according to what file
types have been selected. For the
sake of argument, let’s assume that
you’ve selected a single ZIP file and
right-clicked the mouse. When you
first right click the mouse,
Explorer looks at the name of the
selected file and extracts the file
extension along with the preced-
ing period: .ZIP in this instance. It
then tries to find this string as a
sub-key in the registry under the
HKEY_CLASSES_ROOT branch of the



34 The Delphi Magazine Issue 30

tree. So, in this case, Explorer is
looking for an entry called
HKEY_CLASSES_ROOT\ZIP.

If no such entry is found, then
there’s no special file association.
However, on my system, there is
indeed a registry key with this
name. The default value of the key
is WinZip which tells Explorer what
application is associated with .ZIP
files. You need to realise that this
isn’t necessarily a human-readable
application name. It’s simply the
name of another key in the registry.
If a file association is found, then
Explorer adds the Open item to the
context menu.

Incidentally, Explorer uses this
same key (WinZip in this example)
to obtain the human readable
description of a particular file type.
It does this by looking for a key
called HKEY_CLASSES_ROOT\WinZip. If
found, the Default value of the key
gives the description string that
Explorer displays next to the file.
With WinZip installed, this is
WinZip File.

You also need to bear in mind
that, for performance reasons, this
registry lookup isn’t necessarily
happening all the time: I imagine
that Explorer maintains an inter-
nal, in-memory cache of file
description strings and context-
menu associations. I’m explaining
things in a sequential manner for
the sake of simplicity.

Once the WinZip application key
has been obtained, Explorer then
needs to see if there’s a context
menu handler associated with the
application. It therefore looks for a
key at the following location:

\HKEY_CLASSES_ROOT\WinZip\shellex\

ContextMenuHandlers

In fact, WinZip doesn’t have a key
here. That’s because, rather than
registering a context menu handler
for ZIP files only, WinZip registers a
context menu handler for any file
type. This is important because it
means (amongst other things) that
WinZip can display a context menu
entry Add to Zip when the item
clicked on is not a ZIP file. In order
to look for wildcard context menu
handlers, the Explorer also looks
for registry keys of the form:

HKEY_CLASSES_ROOT\*\shellex\

ContextMenuHandlers\?????????

You’ll notice the asterisk * which
indicates that any context menu
handlers found in this sub-tree are
to be applied to all file types.
WinZip keeps a registry key here
that looks like this:

HKEY_CLASSES_ROOT\*\shellex\

ContextMenuHandlers\WinZip

The Default value for the key is:

{E0d79300-84be-11ce-9641-

444553540000}

Now that the GUID of WinZip’s con-
text menu handler is known, the
server DLL can be located by exam-
ining the corresponding key in the
HKEY_CLASSES_ROOT\CLSID sub-tree
as previously described. The full
registry key of what we’re after is
shown in Listing 2.

The Default value of this key (on
my system, your mileage may
vary) is C:\WINZIP\wzshlext.dll
which is the full pathname of the
in-process server DLL that imple-
ments the context menu hander
associated with ZIP files. I should
emphasise again that neither
WinZip nor any other COM object
needs to know the physical loca-
tion of the COM object server.
Once the CLSID has been obtained,
then things are relatively straight-
forward from the viewpoint of the
COM client.

Context Menu Registration
From the foregoing, it should be
very obvious that when you supply
a context menu handler for the

HKEY_CLASSES_ROOT\CLSID\{e0d79300-84be-11ce-9641-444553540000}\InProcServer32

➤ Listing 2

shell, you also have to somehow
register the context menu in the
registry on the user’s machine. If
you take a look at Borland’s exam-
ple context menu handler
(\DEMOS\SHELLEXT) you’ll find a
file called Contmenu.reg which
contains the code in Listing 3.

This is a registration script
which defines the registry entries
needed by the context menu han-
dler. Explorer understands that
.REG files are registration scripts
and will merge their contents into
the system registry either by
double-clicking the file or else by
right-clicking and selecting Merge
from the context menu that
results.

In this particular case I strongly
recommend that you don’t merge
these registry entries into your
system! Borland made a basic
error when they wrote the above
.REG file, and it should be pretty
obvious what it is. In case you
haven’t spotted it, there’s no path
to the DLL, it’s just contmenu.dll
with no indication of where the file
is located. Consequently, when
Explorer attempts to load the DLL,
Windows will search all the stan-
dard DLL locations and then
report an error, causing Explorer
to assume that the context menu
handler no longer exists.

Personally, I reckon that supply-
ing .REG files to users is a bad idea
anyway. You don’t want end users
to have to muck about double-
clicking REG files and if you do use
REG files, you’ve also got to modify
the file (as part of the installation
procedure) so that the pathname
of the server DLL agrees with the
directory where the user has

REGEDIT4
[HKEY_CLASSES_ROOT\CLSID\{8e3e0f0a-0fcc-11ce-bcb0-b3fd0e25381a}]
@= "Delphi 3.0 Context Menu Shell Extension"
[HKEY_CLASSES_ROOT\CLSID\{8e3e0f0a-0fcc-11ce-bcb0-b3fd0e25381a}\InProcServer32]
@= "contmenu.dll"
"ThreadingModel" = "Apartment"
[HKEY_CLASSES_ROOT\DelphiProject\shellex\ContextMenuHandlers\{8e3e0f0a-0fcc-11ce-
bcb0-b3fd0e25381a}]
@= ""

➤ Listing 3



February 1998 The Delphi Magazine 35

chosen to locate your product.
This is an error prone exercise. A
better idea is to write some code
which directly plugs the necessary
values into the registry during
installation. Depending on the
capabilities of your installer, this
registry configuration code could
be part of the install script itself, or
else located in a seperate DLL or
program called by the installer.

As an example of how to do this,
I’ve provided source code for a
simple, non-visual component in
Listing 4. This component has one
aim in life, the registration of
context menus. It takes four
properties; the COM class GUID
(expressed as a string in curly
brackets), a description string, the
full pathname of the associated
server DLL and another string
which represents the type of file
associated with the context menu
handler. An example of how to use
the component is given in Listing 5.
Bear in mind that if you use Ctrl-
Shift-G within the Delphi IDE to
create new GUIDs, you must
remove the outermost square
brackets before assigning to the
GUID property of the component.
The code for this component and
the test program are contained in
the file REGCONTEXT.ZIP on this
month’s disk.

Real World Context Menus
With all the above in mind, we’re
now in a good position to start writ-
ing our own context menu han-
dlers. Context menus are great
because they server as a gentle
introduction to practical COM pro-
gramming without being too com-
plex. Here’s one important tip
though: if you don’t plan to keep
the context menu handlers that
you develop, you should make a
note of the different GUIDs you use
so that, later, you can go back
through the registry and delete the
registry entries no longer used.

Most of us Delphi programmers
have huge numbers of Pascal files
scattered all over our hard disks, I
know I do! Often, it’s convenient
being able to view a Pascal file from
the Windows shell without having
to fire up Delphi itself. By the time
Delphi 3 has loaded itself into

unit RegContextMenu;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, ComObj;

type
TRegContextMenu = class(TComponent)
private
fGUID: String;
fDesc: String;
fPathName: String;
fFileType: String;

protected
public
procedure Write;

published
property GUID: String read fGUID write fGUID;
property Description: String read fDesc write fDesc;
property PathName: String read fPathName write fPathName;
property FileType: String read fFileType write fFileType;

end;
procedure Register;
implementation
resourcestring
sBadGUID     =      'GUID string not set';
sBadDesc     =      'Description string not set';
sBadPath     =      'Pathname string not set';
sBadFileType =      'FileType string not set';

procedure TRegContextMenu.Write;
begin
{ Make sure everything has been set }
if fGUID = '' then raise Exception.Create (sBadGUID);
if fDesc = '' then raise Exception.Create (sBadDesc);
if fPathName = '' then raise Exception.Create (sBadPath);
if fFileType = '' then raise Exception.Create (sBadFileType);
{ CreateRegKey will raise EOleError on failure }
CreateRegKey ('CLSID\' + fGUID, '', Description);
CreateRegKey ('CLSID\' + fGUID + '\InProcServer32', '', fPathName);
CreateRegKey ('CLSID\' + fGUID + '\InProcServer32', 'ThreadingModel',
'Apartment');

CreateRegKey (fFileType + '\shellex\ContextMenuHandlers\' + fGUID, '', '');
end;
procedure Register;
begin
RegisterComponents ('COM', [TRegContextMenu]);

end;
end.

➤ Listing 4

procedure TForm1.FormCreate(Sender: TObject);
begin
with TRegContextMenu.Create (Self) do try
GUID := '{8e3e0f0a-0fcc-11ce-bcb0-b3fd0e25381a}';
Description := 'Delphi 3.0 Context Menu Shell Extension';
PathName := 'c:\Delphi 3.0\demos\shellext\contmenu.dll';
FileType := 'DelphiProject';
Write;

finally
Free;

end;
end;

➤ Listing 5

memory, you could have taken a
look at four or five different Pascal
files using Notepad. Accordingly,
this next context menu example
shows how to change the file asso-
ciation for .PAS files, while at the
same time associating a View
Source context menu entry with
.PAS files. Of course, this means
that double-clicking a .PAS file will
no longer launch Delphi, but this
isn’t something I tend to do much
anyway. I prefer to explicitly
launch Delphi by double clicking a
Delphi project file.

Figure 3 shows the basic idea.
Whenever a .PAS file is selected,

the View Source item will appear in
the context menu and clicking this
item will fire up the Notepad
program with the selected file
ready loaded. The source code for
the context menu handler is given
in Listing 6. If you compare this
code to Borland’s original context
menu demo program, you will find
that I’ve added some comments to
make it clearer what each method
does.

The real heart of the code is the
call to WinExec inside the TContext-
Menu.InvokeCommand method. Also,
the badly named TContextMenu.
GetCommandStringmethod provides



36 The Delphi Magazine Issue 30

a hint string which is displayed at
the bottom of the Explorer window
when the custom menu item is
selected but not yet clicked. The
corresponding .REG file which
adds the necessary registry entries
is shown in Listing 7. As always,
adding these entries programmati-
cally is left as an exercise for the
reader!

You might be thinking that this
effect could be achieved with virtu-
ally no effort simply by tweaking
the registry such that .PAS files are
treated the same way as .TXT files.
In other words, just go to the
HKEY_CLASSES_ROOT\.txt entry and
set the {Default} value to txtfile.
Well, that would certainly work,
but it rather misses the point. This
context menu example is intended
to serve as a simple demonstration
which you can then extend any
way you like. For example, you
could add several different custom
menu entries such as Compile to

➤ Listing 6

run the designated .PAS through
the DCC command-line compiler,
Browse to fire up your all-singin’,
all-dancin’ Pascal browser pro-
gram, Beautify to run a Pascal
source beautifier and so forth. The
world is your COM-based oyster!
Source to this example is included
on the cover disk as PASMENU.ZIP.
Be sure to change the pathname to
the DLL, as appropriate, before
running the registry script!

Sailing Close To The Wind! Or,
Are You Listening, Delphi?
As my final context menu example,
I want to address a problem that
irritates many Delphi program-
mers. As you’ll know, .PAS files are
associated, by default, with the
Delphi IDE. If you’re browsing
through your source code and you
want to do some work on a project,
double-clicking a .PAS file will
launch the IDE.

That’s ok if the IDE wasn’t
already running but, if it was, Win-
dows will launch a second copy of

the IDE, which is almost certainly
what you don’t want.

Wouldn’t it be great if you could
select a .PAS file and use a context
menu to instantly load it into an
already running copy of Delphi?
That’s exactly what I’m going to
demonstrate here. I’ve seen vari-
ous other solutions to this prob-
lem and they all seem to rely upon
the installation of a ‘listener’ pack-
age into Delphi. What this means is
that you write a custom package
which subclasses Delphi’s main
window and then sits around look-
ing for a custom notification mes-
sage which includes a pointer to a
designated Pascal source file.
Once that message has been
received, the ‘listener’ can then
use Delphi’s Open Tools API to
load the source file so it appears as
a new tab on the edit window.

Although this approach works, I
think it’s rather inelegant. It
involves two distinct chunks of
code: the context menu handler
which sends the notification

unit ContextM;
interface
uses
Windows, ComObj, ComServ, ShlObj, ActiveX, ShellApi,
SysUtils, Registry;

const
CLSID_ContextMenuShellExtension: TGUID =
'{A955FDC0-8819-11D1-AB26-D0E304C10000}';

type
TContextMenu = class(TComObject, IShellExtInit,
IContextMenu)

private
szFile: array [0..Max_Path] of Char;

public
function QueryContextMenu(Menu: hMenu; indexMenu,
idCmdFirst, idCmdLast, uFlags: UInt):
HResult; stdcall;

function InvokeCommand(var lpici: TCMInvokeCommandInfo):
HResult; stdcall;

function GetCommandString(idCmd, uType: UInt;
pwReserved: PUInt; pszName: LPSTR; cchMax: UINT):
HResult; stdcall;

function Initialize (pidlFolder: PItemIDList; lpdobj:
IDataObject; hKeyProgID: HKEY): HResult; stdcall;

end;
implementation
{ The Shell calls this method when it's time for the context
menu handler to add its own custom menu entries to the
menu itself. We return the number of entries we've added.

function TContextMenu.QueryContextMenu (Menu: hMenu;
indexMenu, idCmdFirst, idCmdLast, uFlags: uInt): HResult;

begin
InsertMenu (Menu, indexMenu, mf_String or mf_ByPosition,
idCmdFirst, 'View Source');

Result := 1;
end;
{ The Shell calls this method when our custom menu item has
been clicked by the user. In other words it's time to do
the business... }

function TContextMenu.InvokeCommand (var lpici:
TCMInvokeCommandInfo): HResult;

begin
// Ensure we're not being called by an application
Result := E_Fail;
if HiWord (Integer (lpici.lpVerb)) <> 0 then Exit;
// Verb can only be zero: we only installed one menu item
Result := E_InvalidArg;
if LoWord (lpici.lpVerb) <> 0 then Exit;
// Execute the notepad with the specified file
Result := NoError;
WinExec (PChar (Format('Notepad %s', [szFile])),
lpici.nShow);

end;
{ The Shell calls this method to get a 'hint' string for the
custom menu item }

function TContextMenu.GetCommandString (idCmd, uType: uInt;
pwReserved: puInt; pszName: LPSTR; cchMax: uInt): HRESULT;

begin
Result := E_InvalidArg;
if idCmd = 0 then begin
strCopy(pszName,
'View selected source file in the Notepad');

Result := NOERROR;
end;

end;
function TContextMenu.Initialize (pidlFolder: PItemIDList;
lpdobj: IDataObject; hKeyProgID: HKEY): HResult;

var
medium: TStgMedium;
fe: TFormatEtc;

begin
with fe do begin
cfFormat := cf_HDrop;
ptd := Nil;
dwAspect := dvAspect_Content;
lindex := -1;
tymed := Tymed_hGlobal;

end;
// Fail the call if lpdobj is Nil.
Result := E_Fail;
if lpdobj = Nil then Exit;
{ Render the data referenced by the IDataObject pointer to
an HGLOBAL }

// storage medium in CF_HDROP format.
Result := lpdobj.GetData(fe, medium);
if Failed (Result) then Exit;
{ If only one file is selected, retrieve the file name and
store it in szFile. Otherwise fail the call }

if DragQueryFile(medium.hGlobal, $FFFFFFFF, Nil, 0) = 1
then begin
DragQueryFile (medium.hGlobal, 0, szFile,
SizeOf(szFile));

Result := NOERROR;
end else
Result := E_Fail;

ReleaseStgMedium (medium);
end;
initialization
TComObjectFactory.Create (ComServer, TContextMenu,
CLSID_ContextMenuShellExtension, '',
'Delphi 3.0 ContextMenu Example', ciMultiInstance);

end.



February 1998 The Delphi Magazine 37

➤ Figure 3: Our first real-world context menu handler adds a 'View
Source' item to the menu associated with .PAS files. Elsewhere in
this article, you'll find information on a cunning (and slightly
risqué!) technique for adding PAS files to the IDE's edit window.

REGEDIT4
[HKEY_CLASSES_ROOT\CLSID\{A955FDC0-8819-11D1-AB26-D0E304C10000}]
@= "Shell Extension PAS File Viewer"
[HKEY_CLASSES_ROOT\CLSID\{A955FDC0-8819-11D1-AB26-D0E304C10000}\InProcServer32]
@= "c:\Delphi 3.0\demos\shellext\contmenu.dll"
"ThreadingModel" = "Apartment"
[HKEY_CLASSES_ROOT\.pas]
@= "PasFile"
[HKEY_CLASSES_ROOT\PasFile]
@= "Pascal Source"
[HKEY_CLASSES_ROOT\PasFile\shellex\ContextMenuHandlers\{A955FDC0-8819-11D1-
AB26-D0E304C10000}]

@= ""

➤ Listing 7

message, and the separate listener
package. I thought that it would be
much neater if you could dispense
with the listener package and send
notifications directly to Delphi
itself. But how to do it?

While playing around with the
IDE, I remembered that Delphi will
allow you to drag and drop files
onto an edit window. This being
the case, I realised there must be a
window in the Delphi IDE which
can respond to WM_DROPFILES mes-
sages. After a bit of investigation, it
turned out to be the edit control
itself. If you’re not familiar with the
anatomy of the Delphi IDE, suffice
it to say that a Delphi edit window
contains a standard TTabControl
and this, in turn, contains a special
edit control which acts as a wrap-
per around Borland’s low-level text
editing engine.

I wrote a couple of routines that
enabled me to track down the API-
level handle of the edit control,
assuming that a copy of Delphi was
running. So now, it was just a
simple matter of sending a
WM_DROPFILES message to this
window. Well, not quite! Unfortu-
nately, as part of the message, the
API dictates that you have to pro-
vide a global memory handle
which points to... an undocu-
mented data structure. It’s this
data structure which contains a list
of all the files (there can potentially
be more than one) which are being
dropped onto the target window.
Windows API calls such as DragQue-
ryFile are used to “peel apart” this
secret data structure and return
one file at a time to interested
parties.

Of course, not knowing the
format of this data structure, I was
stuck. Without this vital informa-
tion, I couldn’t build a valid
WM_DROPFILES message which
would be accepted by the IDE.
However, while browsing through
the source code of Borland’s con-
text menu sample, I realised that a
DragQueryFile compatible global
handle is available at the time the
context menu receives its Initial-
ize call and this happens every
time the menu is displayed.
Accordingly, I modified the context
menu code so as to make a copy of

function TabControlEnumerator (Wnd: hWnd; cm: TContextMenu): Boolean; stdcall;
var
szBuffer: array [0..255] of Char;

begin
Result := True;
GetClassName (Wnd, szBuffer, sizeof (szBuffer));
if CompareText (szBuffer, 'TTabControl') = 0 then begin
Result := False;
cm.TabControlWindow := Wnd;

end;
end;
function EditControlEnumerator (Wnd: hWnd; cm: TContextMenu): Boolean; stdcall;
var
szBuffer: array [0..255] of Char;

begin
Result := True;
GetClassName (Wnd, szBuffer, sizeof (szBuffer));
if CompareText (szBuffer, 'TEditControl') = 0 then begin
Result := False;
cm.EditControl := Wnd;

end;
end;
procedure TContextMenu.DropOnDelphi;
var
EditWindow: hWnd;

begin
EditWindow := FindWindow ('TEditWindow', Nil);
if EditWindow <> 0 then begin
TabControlWindow := 0;
EnumChildWindows (EditWindow, @TabControlEnumerator, Integer (Self));
if TabControlWindow <> 0 then begin
EditControl := 0;
EnumChildWindows (EditWindow, @EditControlEnumerator, Integer (Self));
if (EditControl <> 0) and (hGlobal <> 0) then begin
SendMessage (EditControl, wm_DropFiles, hGlobal, 0);

end;
end;

end;
end;

➤ Listing 8



38 The Delphi Magazine Issue 30

the global handle, and then pass
this copy on to the IDE’s edit con-
trol at the time the menu item is
clicked. To my surprise, it worked
rather well!

Do bear in mind that this particu-
lar approach is sailing rather close
to the wind in terms of what you
can and can’t do with the Windows
API. You’ll notice, for example, that
I never release the memory allo-
cated for my copy of the global
handle. That’s because, inside the
IDE, Borland’s code will (quite cor-
rectly) call the API routine DragFin-
ish when it has finished and
DragFinish is essentially just a
wrapper around GlobalFree.

For the sake of brevity, I haven’t
included the full source code to
this new context menu handler.
The full story can be found in the
file PASDROP.ZIP on this month’s
cover disk, but the most interest-
ing part of the code is given in
Listing 8. This code first searches
for an active edit window (the IDE’s
edit windows are top-level win-
dows, so they can be found using
FindWindow) and then searches the

children of the edit window for a
child of type TTabControl. If the tab
control is found, then its children
are searched, in turn, for the edit
control itself. Finally, if the edit
control is found, then the context
menu handler sends a WM_DROPFILES
message to Delphi, fooling the IDE
into thinking that a .PAS file has
just been dropped onto the edit
window.

Well, that’s about it for this time.
By now, you’ve probably had quite
enough of context menus! In next
month’s instalment, we’ll discuss
some of the other shell extensions
available, and I’ll also be introduc-
ing you to the delights of dispinter-
faces, dual interfaces and more.
See you then...

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave as
Dave@HexManiac.com.


	An OLE Automation Taster...
	Enter The Registry
	Context Menus: As Viewed From The Shell
	Context Menu Registration
	Real World Context Menus
	Sailing Close To The Wind! Or, Are You Listening, Delphi?

